Bài tập Toán (hình học) Lớp 7 - Chương II: Tam giác

doc 2 trang Mạnh Hào 28/06/2025 130
Bạn đang xem tài liệu "Bài tập Toán (hình học) Lớp 7 - Chương II: Tam giác", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Bài tập Toán (hình học) Lớp 7 - Chương II: Tam giác

Bài tập Toán (hình học) Lớp 7 - Chương II: Tam giác
BÀI TẬP CHƯƠNG II HÌNH HỌC LỚP 7
Đề 1
Bài 1: (2 điểm) Câu nào đúng, câu nào sai?
Câu
Đúng
Sai
1. Tam giác cân có một góc bằng 450 là tam giác vuông cân.
2. Tam giác có 2 cạnh bằng nhau và có 1 góc bằng 600 là tam giác đều.
3. Mỗi góc ngoài của một tam giác thì bằng tổng của 2 góc trong không kề với nó.
4. Nếu ba góc của tam giác này bằng ba góc của tam giác kia thì 2 tam giác đó bằng nhau.
Bài 2: (2 điểm) Tam giác có độ dài ba cạnh là 24cm, 18cm, 30cm có phải là tam giác vuông không? Vì sao?
Bài 3: (4 điểm) Cho đoạn thẳng BC. Gọi I là trung điểm của BC. Trên đường trung trực của BC lấy điểm A (A khác I)
Chứng minh AIB = AIC.
Kẻ IH vuông góc với AB, kẻ IK vuông góc với AC.
 Chứng minh AHK cân.
 Chứng minh HK//BC.
Bài 4: (2 điểm) Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối của tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED sao cho CM = EN. Chứng minh ba điểm M; A; N thẳng hàng.
Đề 2
Bài 1: (2 điểm)
	Hãy ghép số và chữ tương ứng để được câu trả lời đúng:
	* Tam giác ABC có: * Tam giác ABC là:
1. = 900 ; = 450
2. AB = AC ; = 450
3. = 600
4. = 900
A. Tam giác cân
B. Tam giác vuông
C. Tam giác vuông cân
D. Tam giác đều
Bài 2: (2 điểm) Tính số đo x của góc trong các hình sau đây:
Bài 3: (4 điểm) Cho tam giác ABC vuông tại A có AB = 3cm , AC = 4cm
Tính độ dài cạnh BC.
Trên tia đối của tia AC lấy D sao cho AD = AB. Tam giác ABD có dạng đặc biệt nào? Vì sao?
Lấy trên tia đối của tia AB điểm E sao cho AE = AC. 
 Chứng minh DE = BC.
Bài 4: (2 điểm) Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc với CA (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh ba điểm B, M, D thẳng hàng. 
Đề 3
Bài 1: (2 điểm)Định nghĩa tam giác cân. Nêu một tính chất về góc của tam giác cân.
	Áp dụng: Cho tam giác ABC cân tại A có góc A = 700. Tính các góc B và C.
Bài 2: (2 điểm)
Tam giác có độ dài ba cạnh tỉ lệ với 3 : 4 : 5. Chu vi tam giác là 60cm. Tính độ dài ba cạnh của tam giác.
Tam giác có độ dài ba cạnh tìm được ở trên có phải là tam giác vuông không? Vì sao?
Bài 3: (4 điểm) Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I.
Chứng minh .
So sánh và 
Đường thẳng AI cắt BC tại H. Chứng minh AI BC tại H.
Bài 4: (2 điểm) Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung điểm BD và N là trung điểm EC. Chứng minh ba điểm E, A, D thẳng hàng. 
Đề 4
Bài 1: (2 điểm)
	a) Phát biểu định lí Pytago.
	b) Áp dụng: Cho tam giác ABC vuông tại B có AB = 12cm, AC = 20cm. Tính độ dài BC.
Bài 2: (2 điểm)
Hình nào trong các hình ở trên có số đo x là 800? (đánh dấu X vào ô vuông)
 Hình 1 Hình 3
 Hình 1 và hình 2 Hình 1, hình 2 và hình 4 
Bài 3: (4 điểm)
Vẽ một tam giác vuông ABC có góc A = 900, AC = 4cm, góc C = 600.
Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
Chứng minh 
Tam giác BCD có dạng đặc biệt nào? Vì sao?
Tính độ dài các đoạn thẳng BC, AB.
Bài 4: (2 điểm) Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho D là trung điểm AN. Chúng minh ba điểm M, C, N thẳng hàng.

File đính kèm:

  • docbai_tap_toan_hinh_hoc_lop_7_chuong_ii_tam_giac.doc